Životaschopný fúzní reaktor. Tedy zařízení, které vygeneruje více energie, než ji samo spotřebuje. A mohlo by tady být už za pár let, konkrétně v roce 2025.
Taková je aspoň informace, kterou si lze odnést ze sedmi studií publikovaných 29. září v Journal of Plasma Physics. A pokud fúzní reaktor skutečně dosáhne tohoto milníku, mohl by vydláždit cestu k masivní výrobě čisté energie. Během procesu fúze jsou atomová jádra lehčích prvků donucena se spojit a vytvořit tak atomy těžších prvků, například helia z vodíku. Při této operaci dochází také k uvolnění obrovského množství světla a tepla.
V budoucnu nejen ve hvězdách?
Když je objem výsledných atomů na konci reakce menší než objem těch, které do ní vstoupily, nadbytečný objem se změní v energii. Fúze napájí Slunce a další hvězdy, v jejichž nitru spojuje obrovská gravitace jádra vodíku a vytváří tak helium. K tomu je ale potřeba enormní množství energie, které se objevuje jen při teplotách v řádu 100 milionů stupňů Celsia. Nicméně je získáno mnohem víc energie, než kolik je jí do reakce vloženo.
Současně s tím tato reakce nevytváří skleníkové plyny jako oxid uhličitý, hlavní motor globálního oteplování. Stejně je tomu s ostatními běžnými odpady z reakcí. A pokud jde o palivo, například právě vodíku je na Zemi opravdu dostatek na to, aby touto metodou zásobil lidstvo na další miliony let. Prakticky všechny zúčastněné vědce přitáhl k těmto studiím úmysl vyřešit skutečně vážný celosvětový problém.
Snaha o dopad na společnost
Podle Martina Greenwalda, fyzika plasmy na MIT a jednoho z hlavních vědců za výrobou nového reaktoru, jde hlavně o vyřešení globální krize. „Civilizace je ve velkých problémech a tohle vypadá, že by to mohlo vyřešit.“ Většina dosavadních experimentálních fúzních reaktorů využívá ruský design ve tvaru koblihy zvaný tokamak. Tento model používá silné magnetické pole, aby izoloval obláčky plazmatu a dovedl je do vysokých teplot.
Ty jsou dostatečné na to, aby se uvnitř několik atomů spojilo. Nový experimentální model zvaný SPARC je vyvíjen přímo vědci z MIT a přidruženou společností Commonwealth Fusion Systems. Pokud záměr uspěje, bude právě SPARC prvním, který dosáhne „hořícího plazmatu“. V takové situaci je fúzní reakce soběstačná bez potřeby přidávání nové energie. Jenže v pozemských podmínkách se tohle zatím nikomu kontrolovaně nepodařilo.
Zahájení konstrukce v červnu
Projekt sám byl spuštěn už v roce 2018 a konstrukce je v plánu příští červen se zahájením funkčnosti v roce 2025. Jde o mnohem rychlejší pokrok než u dosavadního největšího reaktoru na světě ITERu, u něhož se spuštění reakce neočekává do roku 2035. Výhodou SPARCU jsou také magnety určené přímo na plazma, které se staly komerčně dostupnými teprve v době před asi třemi lety, tedy dlouho po návrhu ITERu.
Právě nový typ magnetů dovoluje, aby bylo srdce SPARCu asi 3krát menší a až 70krát menší než jádro ITERu, které měří na šířku 6 metrů. Redukce velikosti s sebou nese také menší váhu a samozřejmě cenu, jde skutečně o radikální změnu parametrů. Podle souboru studií se od SPARCu očekává, že bude generovat minimálně 2 – 10krát tolik energie, než kolik bude dovnitř vloženo. K tomu aspoň dospěly podrobné kalkulace.
Produkce páry a pohon turbíny
Teplo vycházející z reakce bude vytvářet páru, která požene turbínu a elektrický generátor. Jde v principu o zcela stejnou metodu, jakou používají elektrárny dneška. Fúzní elektrárny by mohly být jasnou náhradou těch fosilních a není kvůli tomu potřeba jakkoli předělávat současné rozvodné sítě. Naproti tomu obnovitelné zdroj jako solární nebo větrné generátory nejsou na současné parametry adekvátně uzpůsobeny.
Badatelé hlavně doufají, že reaktory inspirované SPARCem budou generovat mezi 250 – 1 000 megawatty elektřiny. Podle Greenwalda elektrárny na současném americkém trhu s energiemi obvykle vyrábí mezi 100 – 500 megawatty. SPARC bude vyrábět pouze teplo, nikoli samotnou elektřinu. Po jeho otestování je v plánu stavba ARC reaktoru, který by z tepla vyráběl přímo elektřinu a byl v provozu od roku 2035. Ambiciózní a náročný cíl.
Jak se na tento záměr a plán díváte?